To get the best deal on Tutoring, call 1-855-666-7440 (Toll Free) Top

# Laws of Exponents

The laws of exponents are the laws of indices. Laws of exponents are useful to simplify algebraic expressions and solve equations. Exponent is a number raised to another number, it is represented as, bm.

Laws of exponent are as follows:

•  b1 = b

• b0 = 1

• Negative exponent

b - m = $\frac{1}{b^m}$

• Multiplication law of exponent

bm . bn =  (b) m + n

• Division law of exponent

$\frac{b^m}{b^n}$ = bm - n

• Power of power law of exponent

(bm) =  bmn

(ab)m  =  am $\times$ b m

$(\frac{a}{b})^m$ = $\frac{a^m}{b^m}$

• Fractional law of exponent

$b^{\frac{m}{n}}$ = $(b^m)^{\frac{1}{n}}$ = $\sqrt[n]{b^m}$

 Related Calculators Calculating Exponents Fractional Exponents Calculator Adding Exponents Calculator Dividing Exponents Calculator

## Laws of Exponents Examples

Lets solve some examples by using laws of exponents.

### Solved Examples

Question 1: Simplify $\frac{(x^2)^5}{x^3 \times y^2}$
Solution:

Given, $\frac{(x^2)^5}{x^3 \times y^2}$

$\frac{(x^2)^5}{x^3 \times y^2}$ = $\frac{x^{10}}{x^3 \times y^2}$ (Using law (bm) =  bmn )

= $\frac{x^{10 - 3}}{y^2}$  ( Using division law of exponent )

= $\frac{x^7}{y^2}$

=> $\frac{(x^2)^5}{x^3 \times y^2}$ = $\frac{x^7}{y^2}$

Question 2: Solve $\frac{m^3 \times 27}{3m^2}$, using exponents laws.
Solution:

$\frac{m^3 \times 27}{3m^2}$ = $\frac{m^3 \times 3^3}{3m^2}$

= $m^{3-2} \times 3^{3-1}$

= $m^1 \times 3^2$

= 9m

=> $\frac{m^3 \times 27}{3m^2}$ = 9m

*AP and SAT are registered trademarks of the College Board.