To get the best deal on Tutoring, call 1-855-666-7440 (Toll Free)
Top

Laws of Exponents

The laws of exponents are the laws of indices. Laws of exponents are useful to simplify algebraic expressions and solve equations. Exponent is a number raised to another number, it is represented as, bm.

Laws of exponent are as follows:

  •  b1 = b

  • b0 = 1

  • Negative exponent

            b - m = $\frac{1}{b^m}$

  • Multiplication law of exponent

           bm . bn =  (b) m + n

  • Division law of exponent

          $\frac{b^m}{b^n}$ = bm - n   

  • Power of power law of exponent

         (bm) =  bmn

         (ab)m  =  am $\times$ b m

         $(\frac{a}{b})^m$ = $\frac{a^m}{b^m}$

  • Fractional law of exponent 

    $b^{\frac{m}{n}}$ = $(b^m)^{\frac{1}{n}}$ = $\sqrt[n]{b^m}$

Related Calculators
Calculating Exponents Fractional Exponents Calculator
Adding Exponents Calculator Dividing Exponents Calculator
 

Laws of Exponents Examples

Back to Top

Lets solve some examples by using laws of exponents.

Solved Examples

Question 1: Simplify $\frac{(x^2)^5}{x^3 \times y^2}$
Solution:
 
Given, $\frac{(x^2)^5}{x^3 \times y^2}$

$\frac{(x^2)^5}{x^3 \times y^2}$ = $\frac{x^{10}}{x^3 \times y^2}$ (Using law (bm) =  bmn )

= $\frac{x^{10 - 3}}{y^2}$  ( Using division law of exponent )

= $\frac{x^7}{y^2}$

=> $\frac{(x^2)^5}{x^3 \times y^2}$ = $\frac{x^7}{y^2}$


 

Question 2: Solve $\frac{m^3 \times 27}{3m^2}$, using exponents laws.
Solution:
 
$\frac{m^3 \times 27}{3m^2}$ = $\frac{m^3 \times 3^3}{3m^2}$

= $m^{3-2} \times 3^{3-1}$

= $m^1 \times 3^2$

= 9m

=> $\frac{m^3 \times 27}{3m^2}$ = 9m
 


*AP and SAT are registered trademarks of the College Board.