In reflection symmetry, the essential ideas of reflection are the transformation of a point toward a reflected point to be the equivalent length of the opposite side of a line. Now we see about definition of reflection symmetry.

A Reflection Symmetry is a form of symmetry in that one partially of the objects is the mirror picture of the other.

A shape might contain both horizontal and vertical lines of reflection.

**Examples of Reflection Symmetry:**

The hexagon has reflection symmetry concerning equally horizontal and vertical lines of reflection.

A reflection is an isometry anywhere if l is various line and P is various point not on l, then r_{l}(P) = P' where l is the vertical bisector of *`bar(PP')` and if `(P)inl`then r*_{l}(P) = P.

A reflection of a line through a point k notation is r_{k} is a transformation in that every point of the original shape has an image to be the similar distance from the line of reflection like the original point except is on the opposite side of the line. Consider to a reflection is a flip. In a reflection, the shape does not modify size.

r_{k}(`DeltaABC)=DeltaA'B'C'`

Transformation is to conserves length. As naming the shape in a reflection need varying the order of the letters such like from clockwise to counterclockwise, a reflection is further specially known as a non-direct or opposite isometry.

**Reflection structures as follows the given procedures:**

**Step 1:** To establish the distance from the known object of a position to the necessary line L or mirror line.

**Step 2:** To plot the reflected position on the opposed side of line L. Reflect point P' from an corresponding distances of a line L or mirror line.

**Step 3:** To get the reflect form of position with structure the reflected form.

**Example:**

**Example : For definition of reflection symmetry: **

How to find reflection symmetry for B, C, D, E, H, I, O, X.

**Solution:**

Step 1: A reflection flips the shape across a line. The new shape is a parallel picture of the new figure.

Step 2: Horizontal reflection since half a shape is a mirror image of the further half.

Step 3: Reflection this alphabet's C, D, E, H, I, O, X